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Preliminaries

Definition

The Dirac notation can be used to represent states. Each state
corresponds to a complex vector.

Example

We will represent quantum bits (qubits) zero and one are represented as
follows:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
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Preliminaries

Definition

Quantum gates are unitary matrices.

Example

Hadamard gate

H =
1√
2

(
1 1
1 −1

)

H|0〉 =
1√
2

(
1
1

)
=

1√
2
|0〉+

1√
2
|1〉
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Preliminaries

Definition

The tensor product, denoted by ⊗, is an operation of two matrices or
vectors which results in a block matrix or vector.

A⊗ B =

 a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB


Example

We can use the tensor product to extend states and gates to multiple
qubits. Given states |0〉 and |1〉 as defined above we can calculate the
tensor product of the two states as follows:

|0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=


1 · 0
1 · 1
0 · 0
0 · 1

 =


0
1
0
0

 = |01〉
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Preliminaries

Definition

Classical States, unlike quantum states, are those which are not in a
superposition.

Example

For 2 bits, we have 22 classical states:

|00〉 =


1
0
0
0

 |01〉 =


0
1
0
0

 |10〉 =


0
0
1
0

 |11〉 =


0
0
0
1


Remark

For n qubits we 2n classical states.
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Preliminaries

Definition

A quantum state |φ〉 is a complex linear combinations of basis states of
the form

|φ〉 = α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉

where:
|α1|2 + |α2|2 + |α3|2 + |α4|2 = 1

In other words, they are unit vectors. A non-basis state is said to be in a
superposition.

Example

Two common quantum states which we will use are ”plus” and ”minus”.

|+〉 =
|0〉+ |1〉√

2
|−〉 =

|0〉 − |1〉√
2
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Preliminaries

Definition

Pauli matrices:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
We have the following identities:

X 2 = Y 2 = Z 2 = −iXYZ = I
XY = iZ YZ = iX ZX = iY YX = −iZ ZY = −iX XZ = −iY

Definition

The Pauli group Pn consists of matrices of the form ikP1 ⊗ ...⊗ Pn

where Pj ∈ {I ,X ,Y ,Z}
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Preliminaries

Definition

The Clifford group (up to scalars) is the normalizer of the Pauli group, ie
Cn = {C | CPnC

−1 ⊂Pn}

Example

H, CNOT =


1 0 0 0
0 1 0 0
1 0 0 1
0 0 1 0

, and S =

(
1 0
0 i

)
are Clifford operators.

Remark

If P is Pauli and C is Clifford, then CPC−1 = Q is Pauli, ie the Clifford
group acts on the Pauli group by conjugation.
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Preliminaries

Definition

A quantum circuit is a sequence of gates acting on a set of qubits. Each
gate acts on a subset of the qubits, and leaves the rest unchanged.

Definition

Clifford Circuits are quantum circuits in which every gate belongs to the
Clifford group. They are generated by the following gates: CNOT ,H, S .
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Preliminaries

Definition

If P is a Pauli matrix and |φ〉 is a state, we say that P stabilizes |φ〉 if
P|φ〉 = |φ〉

Definition

We define the stabilizer of |φ〉 as stab(|φ〉) = {P | P|φ〉 = |φ〉}

Definition

We say that |φ〉 is a stabilizer state if |φ〉 is uniquely defined (up to
scalars) by its stabilizer.

Remark

|φ〉 is a stabilizer state iff |φ〉 = C |0〉 for some Clifford operator C .
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Preliminaries

Definition

Measurement in quantum computing describes collapsing a state in a
superposition to a numeric outcome.

Example

Suppose we have a state |φ〉 = α|0〉+ β|1〉. We say |φ〉 has a probability
of |α|2 of outcome 0 and a probability of |β|2 of outcome 1.

Example

Suppose we have a state |φ〉 = α|00〉+ β|01〉+ γ|10〉+ µ|11〉. We say |φ〉
has a probability of |α|2 + |β|2 of outcome 0 and a probability of
|γ|2 + |µ|2 of outcome 1.
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Preliminaries

What is the significance of this talk?

Quantum computers cannot be simulated efficiently. Classical computers
can simulate Clifford circuits.

This talk explains how.
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Tableaux

Given a stabilizer state |φ〉 a tableau for |φ〉 is a list of 2n Pauli operators:

D1
...

Dn

S1
...

Sn


1 D1, ...,Dn,S1, ...,Sn generate the Pauli group

2 S1, ...,Sn generate the stabilizer of |φ〉
3 D1, ...,Dn commute with each other

4 For i , j ∈ {1, ..., n}, Di and Sj commute if i 6= j
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Eigenvectors of Pauli Matrices

Matrix Eigenvalue Eigenvector

X =

(
0 1
1 0

)
+1 |+〉 = |0〉+|1〉√

2

−1 |−〉 = |0〉−|1〉√
2

Y =

(
0 −i
i 0

)
+1 |+ i〉 = |0〉+i |1〉√

2

−1 | − i〉 = |0〉−i |1〉√
2

Z =

(
1 0
0 −1

)
+1 |0〉 =

(
1
0

)
−1 |1〉 =

(
0
1

)
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Stabilizer Algorithms

The idea of the simulated algorithm is: instead of keeping track of a
quantum state |φ〉 of 2n complex vectors we keep track of its tableau of 2n
Pauli operators.
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Algorithm for Unitary (Clifford) Operations

To apply a unitary operator U to a state |φ〉, replace:

T =

{
D1

S1

}
by T ′ =

{
UD1U

t

US1U
t

}
.

Theorem

If T is a tableau for |φ〉, then T ′ is a tableau for U|φ〉
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Example of Unitary Operations

1 Consider the unitary operator H = H† = 1√
2
.

(
1 1
1 −1

)
2 Let |φ〉 = |0〉+|1〉√

2
and find the stab(|φ〉) = {X , I}

3 The following is a tableau for |φ〉:{
Z

X

}
note the properties are satisfied.

4 A tableau for H|φ〉 is: {
HZH†

HXH†

}
=

{
X

Z

}
.

5 We can verify that this is indeed a tableau for H|+〉 = |0〉 by the fact
that +Z stabilizes |0〉 and X and Z do not commute.
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Algorithm for Measurement

1 Consider the state |φ〉 with a tableau

T =


D1

D2

S1
S2

 =


τ1D1,1 ⊗ D1,2

τ2D2,1 ⊗ D2,2

σ1S1,1 ⊗ S1,2
σ2S2,1 ⊗ S2,2


where σj , τj ∈ {+1,−1} and Dj ,k ,Sj ,k ∈ {I ,X ,Y ,Z}

2 Set k equal to the qubit we wish to measure. For example, if we had
a 2 dimensional qubit we would then set k = 0 for leftmost or k = 1
for rightmost.

3 Now, we determine whether probabilistic or deterministic. To measure
the kth qubit, check whether there exists q ∈ {1, ..., n} such that
Sq,k ∈ {X ,Y }. If no it is determinate; if yes then it is probabilistic.
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Algorithm for Measurement - Case 1

if yes: CASE I - Probabilistic

Let q be the smallest index such that q ∈ {1, ..., n} such that
Sq,k ∈ {X, Y}
Randomly select bit r ∈ {0, 1} uniformly distributed. This will serve
as the outcome of the simulated measurement

Define the updated tableau as follows.
For each i 6= q:

D ′i =

{
D i if D i ,k ∈ {I, Z}
D iSq otherwise

S′i =

{
S i if S i ,q ∈ {I, Z}
SiSq otherwise

Dq = Sq

Sq = (−1)r I ⊗ ...⊗ I ⊗Z ⊗ I ...⊗ I where Z is placed at the kth qubit.
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Algorithm for Measurement - Case 2

if no: CASE II - Determinate:

Let J =
{
i | Di ,k ∈ {X ,Y }

}
Let P =

∏
i∈J Si

Then P = (−1)rP1 ⊗ ...⊗ Pn

Measurement result is 0 if +P , or 1 if −P

Remark

In this case, we do not update the tableau.
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Example of Measurement

1 Consider |φ〉 = |00〉+|10〉√
2

2 First, it is important to recognize that this state can be written as:
|φ〉 = |+〉 ⊗ |0〉

3 stab(|φ〉) = {I ⊗ I , I ⊗ Z ,X ⊗ I ,X ⊗ Z}, hence

T =


X ⊗ X
Z ⊗ I

I ⊗ Z
X ⊗ I


We will first do an example of case 1, then an example of case 2.
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Measurement - Case 1

T =


X ⊗X
Z ⊗I
I ⊗Z
X ⊗I

 −→


(X ⊗X )(X ⊗ I )
Z ⊗I
I ⊗Z
X ⊗I

 =


(I ⊗X )
Z ⊗I
I ⊗Z
X ⊗I


1 To measure the 1st qubit, we set k = 1

2 We now check for q ∈ {1, 2} such that Sq,1 ∈ {X, Y} We find q = 2
such that S2,1 = X .
If yes, then case 1.

3 For all i 6= 2 and if S1,1, D1,1 ∈ {X ,Y } we multiply by S2 = X ⊗ I .
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Measurement - Case 1 (continued)


(I ⊗X )
Z ⊗I
I ⊗Z
X ⊗I

 −→


I ⊗X
(X ⊗I )
I ⊗Z
X ⊗I

 −→


I ⊗X
X ⊗I
I ⊗Z

(Z ⊗I )


1 we replace D2 by S2
2 We randomly select r = 0 or 1. Suppose we select r = 0

3 we replace S2 by Z ⊗ I

The updated tableau is a tableau for the state |00〉
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Example of Measurement - Case 2

|φ〉 =
|00〉+ |10〉√

2
, T =


X ⊗X
Z ⊗I
I ⊗Z
X ⊗I


1 To measure the 2nd qubit, we set k = 2

2 We now check for q ∈ {1, 2} such that Sq,2 ∈ {X, Y}.
If no, then case 2.

3 Let J =
{
i | Di ,k ∈ {X ,Y }

}
= {1}.

4 Let P =
∏

i∈J Si = I ⊗ Z .

5 Then P = (−1)rP1 ⊗ ...⊗ Pn =⇒ r = 0.

6 Therefore the measurement result is 0.
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Correctness of Algorithm - Case 1

There are a couple reasons why this algorithmn is correct.

1 For all k, n there cannot exists Si ,k such that Si ,k ∈ {X ,Y ,Z} and
Si ,k−n ∈ {X ,Y ,Z} \ Si ,k
=⇒ once updated, the tableau still satisfies the properties.

2 X ,Y have eigenvectors superposition
=⇒ the algorithm targets specifically these rows to be updated.

3 r = 0 =⇒ (−1)0Z where |0〉 is the eigenvector of +Z
r = 1 =⇒ (−1)1Z where |1〉 is the eigenvector of −Z
=⇒ Selecting r determines the outcome
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