Simulation of Stabilizer Circuits A Mathematical Approach

Aeriana M. V. Narbonne

Dalhousie University

Winter 2021

- Preliminaries
- 2 Tableaux Conditions
- Onitary Tableau Algorithm
- Measurement Tableau Algorithms
- Proofs of Correctness of Algorithms

The **Dirac notation** can be used to represent states. Each state corresponds to a complex vector.

Example

We will represent quantum bits (qubits) zero and one are represented as follows:

$$|0
angle = \begin{pmatrix} 1\\ 0 \end{pmatrix} |1
angle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Quantum gates are unitary matrices.

Example

Hadamard gate

$$-H = rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 $H|0
angle = rac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = rac{1}{\sqrt{2}}|0
angle + rac{1}{\sqrt{2}}|1
angle$

• = • •

Preliminaries

Definition

The **tensor product**, denoted by \otimes , is an operation of two matrices or vectors which results in a block matrix or vector.

$$A \otimes B = \begin{pmatrix} a_{1,1}B \dots a_{1,n}B \\ \vdots \ddots \vdots \\ a_{m,1}B \dots a_{m,n}B \end{pmatrix}$$

Example

We can use the tensor product to extend states and gates to multiple qubits. Given states $|0\rangle$ and $|1\rangle$ as defined above we can calculate the tensor product of the two states as follows:

$$|0\rangle \otimes |1\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0\\ 1 \cdot 1\\ 0 \cdot 0\\ 0 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix} = |01\rangle$$

Classical States, unlike quantum states, are those which are not in a superposition.

Example

For 2 bits, we have 2^2 classical states:

$$|00
angle = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix} \ |01
angle = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix} \ |10
angle = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix} \ |11
angle = egin{pmatrix} 0 \ 0 \ 0 \ 1 \ 0 \end{pmatrix}$$

Remark

For n qubits we 2^n classical states.

Preliminaries

Definition

A quantum state $|\phi\rangle$ is a complex linear combinations of basis states of the form

$$|\phi\rangle = \alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$

where:

$$|\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 + |\alpha_4|^2 = 1$$

In other words, they are unit vectors. A non-basis state is said to be in a **superposition**.

Example

Two common quantum states which we will use are "plus" and "minus".

$$|+
angle=rac{|0
angle+|1
angle}{\sqrt{2}}$$

$$-
angle=rac{|0
angle-|1
angle}{\sqrt{2}}$$

< □ > < /□ >

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We have the following identities:

$$X^{2} = Y^{2} = Z^{2} = -iXYZ = I$$

$$XY = iZ \quad YZ = iX \quad ZX = iY \quad YX = -iZ \quad ZY = -iX \quad XZ = -iY$$

Definition

The **Pauli group** \mathscr{P}_n consists of matrices of the form $i^k P_1 \otimes ... \otimes P_n$ where $P_j \in \{I, X, Y, Z\}$

★ ∃ ►

Preliminaries

Definition

The Clifford group (up to scalars) is the normalizer of the Pauli group, ie $\mathscr{C}_n = \{ C \mid C \mathscr{P}_n C^{-1} \subset \mathscr{P}_n \}$

Example

$$H, \ CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \text{ and } S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \text{ are Clifford operators.}$$

Remark

If P is Pauli and C is Clifford, then $CPC^{-1} = Q$ is Pauli, ie the Clifford group acts on the Pauli group by conjugation.

< □ > < 同 > < 三 > <

A quantum **circuit** is a sequence of gates acting on a set of qubits. Each gate acts on a subset of the qubits, and leaves the rest unchanged.

Definition

Clifford Circuits are quantum circuits in which every gate belongs to the Clifford group. They are generated by the following gates: CNOT, H, S.

If P is a Pauli matrix and $|\phi\rangle$ is a state, we say that P stabilizes $|\phi\rangle$ if $P|\phi\rangle=|\phi\rangle$

Definition

We define the **stabilizer** of $|\phi\rangle$ as $stab(|\phi\rangle) = \{P \mid P |\phi\rangle = |\phi\rangle\}$

Definition

We say that $|\phi\rangle$ is a **stabilizer state** if $|\phi\rangle$ is uniquely defined (up to scalars) by its stabilizer.

Remark

 $|\phi\rangle$ is a stabilizer state iff $|\phi\rangle={\it C}|0\rangle$ for some Clifford operator ${\it C}.$

イロト イヨト イヨト

Measurement in quantum computing describes collapsing a state in a superposition to a numeric outcome.

Example

Suppose we have a state $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$. We say $|\phi\rangle$ has a probability of $|\alpha|^2$ of outcome 0 and a probability of $|\beta|^2$ of outcome 1.

Example

Suppose we have a state $|\phi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \mu|11\rangle$. We say $|\phi\rangle$ has a probability of $|\alpha|^2 + |\beta|^2$ of outcome 0 and a probability of $|\gamma|^2 + |\mu|^2$ of outcome 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is the significance of this talk?

Quantum computers cannot be simulated efficiently. Classical computers can simulate Clifford circuits.

This talk explains how.

Given a stabilizer state $|\phi\rangle$ a tableau for $|\phi\rangle$ is a list of 2n Pauli operators:

$$\left(\begin{array}{c}
\mathsf{D}_{1}\\
\vdots\\
\mathsf{D}_{n}\\
\mathsf{S}_{1}\\
\vdots\\
\mathsf{S}_{n}
\end{array}\right)$$

- $D_1, ..., D_n, S_1, ..., S_n$ generate the Pauli group
- 2 $S_1, ..., S_n$ generate the stabilizer of $|\phi\rangle$
- **③** $D_1, ..., D_n$ commute with each other
- For $i, j \in \{1, ..., n\}$, D_i and S_j commute if $i \neq j$

Matrix	Eigenvalue	Eigenvector
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	+1	$ + angle=rac{ 0 angle+ 1 angle}{\sqrt{2}}$
	-1	$ - angle=rac{ 0 angle- 1 angle}{\sqrt{2}}$
$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	+1	$ +i\rangle = \frac{ 0\rangle + i 1\rangle}{\sqrt{2}}$
	-1	$ -i\rangle = \frac{ 0\rangle - i 1\rangle}{\sqrt{2}}$
$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	+1	$ 0 angle = egin{pmatrix} 1 \ 0 \end{pmatrix}$
	-1	$ 1 angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$

- (日)

The idea of the simulated algorithm is: instead of keeping track of a quantum state $|\phi\rangle$ of 2^n complex vectors we keep track of its tableau of 2n Pauli operators.

To apply a unitary operator U to a state $|\phi\rangle$, replace:

$$T = \left\{ \begin{matrix} D_1 \\ S_1 \end{matrix} \right\} \quad by \quad T' = \left\{ \begin{matrix} UD_1 U^t \\ US_1 U^t \end{matrix} \right\}.$$

Theorem

If T is a tableau for $|\phi\rangle$, then T' is a tableau for $U|\phi\rangle$

Example of Unitary Operations

- Consider the unitary operator $H = H^{\dagger} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- 3 Let $|\phi\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and find the $stab(|\phi\rangle) = \{X, I\}$

3 The following is a tableau for $|\phi\rangle$:

$$\begin{cases} Z \\ X \end{cases}$$

note the properties are satisfied.

• A tableau for $H|\phi\rangle$ is:

$$\frac{\left\{ HZH^{\dagger} \\ HXH^{\dagger} \right\} = \left\{ X \\ Z \right\}$$

• We can verify that this is indeed a tableau for $H|+\rangle = |0\rangle$ by the fact that +Z stabilizes $|0\rangle$ and X and Z do not commute.

 $\ \ {\rm Onsider \ the \ state} \ |\phi\rangle \ {\rm with \ a \ tableau}$

$$T = \begin{cases} D_1 \\ D_2 \\ S_1 \\ S_2 \end{cases} = \begin{cases} \tau_1 D_{1,1} \otimes D_{1,2} \\ \tau_2 D_{2,1} \otimes D_{2,2} \\ \sigma_1 S_{1,1} \otimes S_{1,2} \\ \sigma_2 S_{2,1} \otimes S_{2,2} \end{cases}$$

where $\sigma_j, \tau_j \in \{+1, -1\}$ and $D_{j,k}, S_{j,k} \in \{I, X, Y, Z\}$

- ② Set k equal to the qubit we wish to measure. For example, if we had a 2 dimensional qubit we would then set k = 0 for leftmost or k = 1 for rightmost.
- Solution Now, we determine whether probabilistic or deterministic. To measure the k^{th} qubit, check whether there exists $q \in \{1, ..., n\}$ such that $S_{q,k} \in \{X, Y\}$. If no it is determinate; if yes then it is probabilistic.

if yes: CASE I - Probabilistic

- Let q be the smallest index such that $q \in \{1, ..., n\}$ such that $S_{a,k} \in \{X, Y\}$
- Randomly select bit $r \in \{0, 1\}$ uniformly distributed. This will serve as the outcome of the simulated measurement.
- Define the updated tableau as follows. For each $i \neq q$: $D'_{i} = \begin{cases} D_{i} & \text{if } D_{i,k} \in \{I, Z\}\\ D_{i}S_{q} & \text{otherwise} \end{cases}$ $\mathsf{S}'_i = \begin{cases} \mathsf{S}_i & \text{if } \mathsf{S}_{i,q} \in \{\mathsf{I}, \mathsf{Z}\}\\ \mathsf{S}_i \mathsf{S}_q & \text{otherwise} \end{cases}$ • $D_a = S_a$ • $S_{\sigma} = (-1)^r I \otimes ... \otimes I \otimes Z \otimes I... \otimes I$ where Z is placed at the k^{th} qubit.

if no: CASE II - Determinate:

- Let $J = \{i \mid D_{i,k} \in \{X, Y\}\}$
- Let $P = \prod_{i \in J} S_i$
- Then $P = (-1)^r P_1 \otimes ... \otimes P_n$
- Measurement result is 0 if +P , or 1 if -P

Remark

In this case, we do not update the tableau.

• Consider
$$|\phi\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

- **②** First, it is important to recognize that this state can be written as: $|\phi\rangle = |+\rangle \otimes |0\rangle$
- stab($|\phi\rangle$) = { $I \otimes I, I \otimes Z, X \otimes I, X \otimes Z$ }, hence

$$T = \begin{cases} X \otimes X \\ Z \otimes I \\ \hline I \otimes Z \\ X \otimes I \end{cases}$$

We will first do an example of case 1, then an example of case 2.

$$T = \begin{cases} X \otimes X \\ Z \otimes I \\ 1 \otimes Z \\ X \otimes I \end{cases} \longrightarrow \begin{cases} (X \otimes X)(X \otimes I) \\ Z \otimes I \\ 1 \otimes Z \\ X \otimes I \end{cases} = \begin{cases} (I \otimes X) \\ Z \otimes I \\ 1 \otimes Z \\ X \otimes I \end{cases}$$

• To measure the 1st qubit, we set k = 1

② We now check for $q \in \{1,2\}$ such that $S_{q,1} \in \{X, Y\}$ We find q = 2 such that $S_{2,1} = X$. If **yes**, then case 1.

So For all $i \neq 2$ and if $S_{1,1}$, $D_{1,1} \in \{X, Y\}$ we multiply by $S_2 = X \otimes I$.

$$\begin{cases} (I \otimes X) \\ Z \otimes I \\ \hline I \otimes Z \\ X \otimes I \end{cases} \longrightarrow \begin{cases} I \otimes X \\ (X \otimes I) \\ I \otimes Z \\ X \otimes I \end{cases} \longrightarrow \begin{cases} I \otimes X \\ (X \otimes I) \\ I \otimes Z \\ X \otimes I \end{cases} \longrightarrow \begin{cases} I \otimes X \\ X \otimes I \\ \hline I \otimes Z \\ (Z \otimes I) \end{cases}$$

• we replace
$$D_2$$
 by S_2

- **2** We randomly select r = 0 or 1. Suppose we select r = 0
- **3** we replace S_2 by $Z \otimes I$

The updated tableau is a tableau for the state |00
angle

Example of Measurement - Case 2

$$|\phi\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}, \quad T = \begin{cases} \mathsf{X} \otimes \mathsf{X} \\ \mathsf{Z} \otimes \mathsf{I} \\ \mathsf{I} \otimes \mathsf{Z} \\ \mathsf{X} \otimes \mathsf{I} \end{cases}$$

1 To measure the 2nd qubit, we set
$$k = 2$$

② We now check for $q \in \{1, 2\}$ such that $S_{q,2} \in \{X, Y\}$. If **no**, then case 2.

3 Let
$$J = \{i \mid D_{i,k} \in \{X, Y\}\} = \{1\}.$$

• Let
$$P = \prod_{i \in J} S_i = I \otimes Z$$
.

O Therefore the measurement result is 0.

There are a couple reasons why this algorithmn is correct.

• For all k, n there cannot exists $S_{i,k}$ such that $S_{i,k} \in \{X, Y, Z\}$ and $S_{i,k-n} \in \{X, Y, Z\} \setminus S_{i,k}$

 \implies once updated, the tableau still satisfies the properties.

2 X, Y have eigenvectors superposition

 \implies the algorithm targets specifically these rows to be updated.

3
$$r = 0 \implies (-1)^0 Z$$
 where $|0\rangle$ is the eigenvector of $+Z$

$$r=1\implies (-1)^1Z$$
 where $|1
angle$ is the eigenvector of $-Z$

$$\implies$$
 Selecting r determines the outcome